
84     LXF208 March 2016 www.linuxformat.com

Swift

$ wget https://swift.org/builds/ubuntu1404/swift-2.2-
SNAPSHOT-2015-12-18-a/swift-2.2-SNAPSHOT-2015-12-18-
a-ubuntu14.04.tar.gz.sig
$ gpg --verify swift-2.2-SNAPSHOT-2015-12-18-a-
ubuntu14.04.tar.gz

The first command installs some required packages in
case they’re not already installed. The second command
downloads the latest development snapshot. The third
imports PGP keys and should only be executed once on each
Linux system. The fourth command downloads the latest
keys and the fifth downloads the required signature files.
The final command verifies that the archive that you’ve
downloaded is intact. Bear in mind that the last command
might produce a harmless warning message that you can
ignore provided that you downloaded all files from a trusted
source (eg https://swift.org).

If everything is fine so far, extract the archive with tar xzf
swift-2.2-SNAPSHOT-2015-12-18-a-ubuntu14.04.tar.gz.
This command creates a new directory that you should put in
your current PATH variable:
$ export PATH="/home/mtsouk/swift-2.2-SNAPSHOT-2015-
12-18-a-ubuntu14.04/usr/bin":"${PATH}”

Note: adjust the /home/mtsouk/swift-2.2-SNAPSHOT-
2015-12-18-a-ubuntu14.04 path in order to match your
system, username and Swift directory. You can find your
version of Swift by executing swift --version . (The screenshot
(above) shows the contents of the bin directory of the
Swift installation.)

Swift: An
essential guide
Get up to speed with the programming language, Swift, and get coding 
quickly, Mihalis Tsoukalos motors through the basics.

The biggest surprise of the Apple Worldwide Developer
Conference 2014 (WWDC) was the announcement of
Swift, a new programming language that will –

eventually – replace Apple Objective-C. The biggest surprise
of WWDC 2015 was the announcement that Swift was to
become an open source project. This tutorial is a gentle
introduction to Swift and its various features through a few
small but complete code examples.

It’s most likely, you will find the installation process the
most difficult part of this tutorial. Apple doesn’t provide
packages for every Linux distribution (distro). Currently, only
Ubuntu 14.04 and 15.10 are officially supported. If you have a
different Linux distro, the installation process will likely be
more challenging. For an Ubuntu 14.04 Linux system the
installation process is:
$ sudo apt-get install clang libicu-dev
$ wget https://swift.org/builds/ubuntu1404/swift-2.2-
SNAPSHOT-2015-12-18-a/swift-2.2-SNAPSHOT-2015-12-18-
a-ubuntu14.04.tar.gz
$ wget -q -O - https://swift.org/keys/all-keys.asc | gpg
--import -
$ gpg --keyserver hkp://pool.sks-keyservers.net --refresh-keys
Swift

 The contents of the bin directory of the Swift installation.

 Mihalis
Tsoukalos  is a 
DBA, programmer, 
mathematician 
and Unix admin. 
In his spare time 
he likes to write 
technical articles 
and fight crime. 

Our
expert

Parentheses for
if statements are
optional, because
Swift considers that
sometimes they
add unnecessary
noise to code. Swift
also doesn’t have
.h files because you
don’t need them.

Quick
tip

LXF208.code_swift.indd 84 28/01/2016 17:13

March 2016 LXF208     85www.techradar.com/pro

Swift

Never miss another issue Head to http://bit.ly/LinuxFormat

If you execute Swift without any command line arguments
you will be presented with the Swift REPL. The REPL is the
perfect place to learn new things because it’s an interactive
shell that allows you to read, evaluate and print the results of
any Swift code you enter. All Swift functionality is available
from the REPL. Additionally, if you press the tab key, the REPL
will present you with a list of available completions based on
the text you’ve already typed. Let’s start by presenting you
with the “Hello World!” program written in Swift:
print("Hello, World!")

If you are familiar with C, C++ or Objective-C, you’ll likely
make a few observations. First, there are no semicolons that
denote the end of a command. Swift doesn’t use semicolons
unless you want to put two commands on the same line.
Second, there’s no main() function which should be a great
surprise for you. Last, there are no #include or #import
statements; however, this only happens because the “Hello
World” program is small and doesn’t need any.

You can execute the “Hello World!” program as follows:
$ swift hw.swift
Hello, World!
$ swiftc hw.swift
$ ls -l hw
-rwxrwxr-x 1 mtsouk mtsouk 13676 Dec 24 18:19 hw*
$./hw
Hello, World!
$ cat hw.script
#!/home/mtsouk/swift-2.2-SNAPSHOT-2015-12-18-a-
ubuntu14.04/usr/bin/swift
print("Hello World!")
$ chmod 755 hw.script
$./hw.script
Hello World!

As you can see there are three different ways to execute
Swift code. The first executes Swift code from the command
line without creating an executable file. The second method
uses swiftc to compile hw.swift and generate an executable
binary file that’s automatically named hw based on the
filename of the file with the Swift code. The third way shows
how to create and execute a Swift script (hw.script) – this is
analogous to a Unix shell script. If you can successfully run
the Hello World program then you’re ready to continue.

Apple has included the Swift Package manager and a
Build System in the Swift package which offers a handy way
for compiling Swift projects. We’ll use the hw.swift file as an
example. First, you’ll need to create a new directory that will
include all project files with $ mkdir hw and $ cd hw.

Next, you must create a file called Package.swift that will
be the manifest file of the project – this is mandatory. If the
manifest file is empty, the package manager will create the

new project using the default options. As you are using the
defaults, the package manager expects to find all Swift code
inside a directory called Sources which you must also create:
$ touch Package.swift
$ mkdir Sources

By default, the package manager will search for a file
named main.swift and compile it, so copy hw.swift inside the
Sources directory but name it main.swift and build the
project as follows:
$ cp ~/hw.swift Sources/main.swift
$ swift build

The final product will be available inside the .build/debug
directory. This happens because the package manager
considers that your first executable will be used for
debugging. The name of the executable file will be the same
as the name of the project. (See the screenshot (below) for
the full list of created files and directories that are created for
a project.) The rest of the tutorial will show important features
of the language so get ready to write some Swift code!

Constants and variables
Swift requires you to declare either constants or variables.
The code (below) defines a variable and a constant inside the
Swift REPL:
1> var youCanChangeMe = 12
youCanChangeMe: Int = 12
 2> let youCannotChangeMe = 12
youCannotChangeMe: Int = 12

You should use the var keyword to declare a mutable
variable and let to declare an immutable variable. Swift will
generate a very descriptive error message if you try to change
the value of youCannotChangeMe (as you can see below).

 The Swift Package Manager, which is included in the Swift package, creates a
plethora of files and directories when building a project.

Two good books
about Swift are
Swift Programming:
The Big Nerd Ranch
Guide by Matthew
Mathias, John
Gallagher and The
Swift Apprentice:
Beginning
Programming
with Swift 2 by
Janie Clayton,
Alexis Gallagher,
Matt Galloway, Eli
Ganem, Erik Kerber
and Ben Morrow.

Quick
tip

Other Swift characteristics
Swift values are never implicitly converted to
another type which makes your code less buggy.
You should always use curly brackets (or braces)
{ and } even for blocks of code that only have one
line. As we mention in the tutorial, the most
powerful control statement in Swift is the switch
statement. As Swift also supports functional

programming, a Swift function can return
another function as its value! Additionally, you
can use any Unicode character as a variable
name. So, eg you can say:
let ϖ = 3.14159

Swift understands when a variable that was
declared as var never changes its value and

prints the following warning:
bubbleSort.swift:7:21: warning: variable ‘temp’

was never mutated; consider changing to ‘let’
constant

Swift also supports the while and the repeat-
while statements which is similar to the do-while
statement used in C.

LXF208.code_swift.indd 85 28/01/2016 17:13

86     LXF208 March 2016 www.linuxformat.com

Swift

Never miss another issue Subscribe to the #1 source for Linux on page 30.

 You can’t change the value of a let variable – only the
value of a variable declared with var is allowed to be
changed. Also, you can’t change the type of a variable!

Additionally, you’re not allowed to change the type of a
variable even if it was declared with var. The Swift language is
clever enough to automatically understand the type of a
variable. However, you can still declare the type of a variable
yourself using the following notation:
var youCanChangeMe: Int = 123

The Swift code (below) defines a recursive function that
will enable you to calculate integers that belong to the
Fibonacci sequence:
func fibo(number: Int) -> Int {
 if number == 0 {
 return number
 }
 if number == 1 {
 return number
 }
 return (fibo(number - 1) + fibo(number - 2))
}

The declaration of the fibo() function shows that it needs
an integer as its input, which is assigned to the number
variable and that it also returns an integer. Should you wish to
calculate the first 15 numbers of the Fibonacci sequence,
you should use the following for loop:
for i in 0...15 {
	 print("Fibonacci number \(i) is: \(fibo(i))")
}

The use of the \() notation inside print() allows the
programmer to include a variable or the return value of a
function inside a string. If you are familiar with C, you can see
that you don’t need to specify the type of the variable that’s
going to be printed.

Alternatively, you can write the same for loop as follows:
let loop = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
for i in loop {
 print("Fibonacci number \(i) is: \(fibo(i))")
}

The naive last example shows that you can iterate over the
items of an array using a for loop. Despite the new style of the
Swift for loop, you can still use the old style because it’s still
valid, eg: for i = 0; i<=15; i++ { } .

However, future Swift versions might remove the C-style
for loop so you’d be advised to use the new for loop. If you

don’t want to include the right bound in your for loop, you
should write it as for i in 0..<5 { } . If, however, you want to use
a specific step, you can write the for loop as /for i in 2.
stride(to: 10, by: 2) { } .

The previous for loop only returns 2, 4, 6 and 8 using the
 stride() function. The stride() function returns a sequence
of values of any ‘strideable’ type and can also be used for
getting a reverse range. Should you wish to get a reverse
range without using stride, you should use the reverse()
function as follows:
for i in (1...5).reverse() { }

Please bear in mind that the loop is invalid and will
generate an error message when you try to execute it:
for i in 5...1 { }

As you can see from the last example, stride() also works
for doubles!

Swift functions
Swift functions are very powerful and support many
innovative features including variadic parameters, in-out
parameters and the ability to return tuples. Variadic
parameters represent zero or more parameters of a given
type. We illustrate this in the next example (variadic.swift):
func Sum(integers: Int...) -> Int {
	 var total = 0
	 for number in integers {
		 total += number
	 }
	 return total
}

var total = Sum(10, 30, 50, -17, 9, 110, -130, 17, 100)
print("The total is \(total)")

The sum function converts the variadic variable integers
into a constant array named integers with Int elements that
are accessed using a for loop.

In-out function parameters should remind you of the ‘call
by reference’ functionality found in C. This is used when you
want the changes you make inside a function to persist after
the function call has ended. The following Swift code
illustrates in-out function parameters (inAndOut.swift):
func minMax(inout min: Int, inout max: Int) {
	 if min > max {
		 let temp = min
		 min = max
		 max = temp
	 }
}
var myMin = 100
var myMax = -10
print("(Before) Min: \(myMin) and Max: \(myMax)")
minMax(&myMin, max: &myMax)
print("(And After) Min: \(myMin) and Max: \(myMax)")

The inAndOut.swift code produces the following output:
(Before) Min: 100 and Max: -10
(And After) Min: -10 and Max: 100

Please note that Swift requires that you write the second
argument label only and not both of them when calling
 minMax() . Therefore, the next two calls of minMax() will not
be valid Swift code:
minMax(&myMin, &myMax)
minMax(min: &myMin, max: &myMax)

Swift also supports
Structures, Classes,
Enumerations,
Protocols, Generics,
Error Handling
and Functional
Programming and
can be used as a
scripting language.

Quick
tip

LXF208.code_swift.indd 86 28/01/2016 17:13

March 2016 LXF208     87www.techradar.com/pro

Swift

The error message produced by the first line of code
would be the following:
inAndOut.swift:13:7: error: missing argument label ‘max:’ in
call
minMax(&myMin, &myMax)
 ^
 max:

The second call of the minMax() function will generate
the following error message:
inAndOut.swift:13:7: error: extraneous argument label ‘min:’
in call
minMax(min: &myMin, max: &myMax)

The way you should call a function with more than one
argument, and the error messages produced might look a
little strange but this is how Swift currently works.

The use of tuples provides a nice way of grouping values of
any type. They allow you to pass or receive multiple values
easily and allow functions to return multiple values without
using a structure or a separate object.
import Glibc
func minMax(array: [Int]) -> (min: Int, max: Int) {
...
 return (min, max)
}

var randomArray = [Int]()
// Put 10 random numbers in the array
for i in 1...10 {
 var number = random()
 randomArray.append(number)
}

let myMM = minMax(randomArray)
// Alternatively
var (myMin, myMax) = minMax(randomArray)

print("Max is \(myMM.max) and Min is \(myMM.min)")
print("Max is \(myMax) and Min is \(myMin)")

As you can see there are two ways to get and use a tuple:
as a single variable (myMM) or as separate variables
(myMin and myMax). If you don’t know the total number of
fields a tuple has then the first method is better. The
declaration of minMax() shows that it returns two values and
that it requires its input to be an array of integers with no
specific size. The key point in the minMax() implementation
is the return call at the end of it. The import Glibc command
allows you to use existing C functions in your Swift code and
is the equivalent of the import Darwin command used on Mac
OS X. Please see the tuplesRandom.swift file for the full
implementation of the minMax() function.

The most powerful control statement in Swift is switch, as
it can use regular expressions in its branches and even match
tuples to make your life easier. It’s better suited to more
complicated conditions and executes the appropriate block
of code based on the first successful match. As it doesn’t

need a break statement, it avoids executing more than one
case by mistake. Just don’t forget that a switch statement
must either cover all possible cases explicitly or have a default
part for catching what was not covered so far. You also get the
matched values and use them afterwards:
case (let x, let y): print("You are at \(x) and \(y)")

Swift optionals
Optionals is another new Swift feature that will help you
reduce bugs in your code. The code (below) shows how they
are used (optionals.swift) with a dictionary structure:
let Contacts = ["George": “123211212”, “Georgia":
“23211223"]
let isGeorgiaPresent: String? = Contacts["Georgia"]

if isGeorgiaPresent == nil {
 print("You have no contact named Georgia!")

}
else {
 let contactNumber = isGeorgiaPresent!
 print("The contact number of Georgia is \
(contactNumber)")
}

The previous code allows you to find out whether a given
key can be found in the dictionary and act accordingly.
The question mark (String?) indicates the optionality of the
value. The nil value works with any type and means ‘there is
no value present’. If you’re sure that a variable has a value, you
can use an exclamation mark (!) to get a value from an
optional which is called ‘force unwrapping’. In case you forget
to put the ‘!’, the output from the previous Swift code would be:
The contact number of Georgia is Optional("23211223")

As you can see, the presented output isn’t particularly
useful. So bear in mind that the unwrapping process – which
is also called ‘forcing the value out’ – is mandatory.

This part will implement the Bubble sort algorithm in
Swift. The source code of bubbleSort.swift is the following:
func bubbleSort(inout array: [Int]) {
 let elements = array.count - 1
 for var i=elements; i>=1; i-- {
 for var j=0; j<=i-1; j++ {
 // Swap them if needed
 if array[j] > array[j+1] {
 let temp = array[j]
 array[j] = array[j+1]
 array[j+1] = temp
 } } } }

The bubbleSort function uses an in-out parameter for the
input array so that changes to it inside the function will
persist after the function call has ended. Note that the array.
count variable holds the total number of elements in an array
not the maximum index number.

And that’s your lot. Keep programming in Swift to learn all
its capabilities because Swift is here to stay! LXF

Closures
Closures are similar to blocks in Objective-C and
to lambdas in other programming languages.
Strictly speaking closures are small self-
contained blocks of functionality that can be
passed around and used in your code. Closures
look pretty much like a function declaration,

and that’s because functions in Swift are just
named closures!

One important difference between closures
and functions is that once a function has been
defined, its name cannot be reassigned whereas
the name of a closure can be reused so you

cannot be sure that a named closure does the
same thing throughout the entire program
execution. Closures are used because they are
more compact than regular functions especially
when used in combination with other functions
such as map.

Next issue:Swift projects

LXF208.code_swift.indd 87 28/01/2016 17:13

