
98     Linux Format February 2009

Tutorial Webcams

Ian Barton
is no ordinary 
farmer. While 
others are busy 
chewing hay or 
stroking their 
sheep, Ian is busy 
putting webcams 
into every barn, 
tractor and goat 
within reach.

Our
expert

Bus 004 Device 002: ID 046d:08af Logitech, Inc. QuickCam

Easy/Cool

Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root

hub

Bus 003 Device 003: ID 04f2:b013 Chicony Electronics Co.,

Ltd

Here we can see that it’s a Logitech QuickCam, which can be
picked up for under £10 pounds. A quick spin on Google
reveals that this is supported by the gspca driver. Many
distros, including Ubuntu Hardy, have support for this built into
the kernel, but the version of the driver supplied with Hardy
doesn’t work with that particular Logitech Webcam.

We can check on the support for a particular webcam by
Googling for its device ID, in this case 08af. A bit of research
showed that support for this webcam is available in the latest
gspca driver, available from http://mxhaard.free.fr/
download.html. The first step is to download the latest
version for the 2.6 kernel from http://mxhaard.free.fr/
spca50x/Download/gspcav1-20071224.tar.gz.

Once we have downloaded the driver we need to unpack it:
tar -xvzf qc-usb-0.6.6.tar.gz

Installing it is fairly straightforward. First, we must install the
Linux headers and the build-essential package:

Webcams: Big B

Hardcore Linux Challenge yourself
with advanced projects for power users

Ian Barton shares the delicious feeling of being able to keep an eye on your 
property without being there. He may be watching you right now…

We shall be using a Debian-based system, but the
instructions provided should work with almost any Linux
distro. The only major problem you may encounter is getting
your distro to recognise a particular model of USB webcam.

Webcams can be connected via USB, Ethernet or wireless
(these are generally described as ‘network cameras’). Linux
support for USB webcams is patchy. The problem is made
worse because manufacturers can use different chipsets in
the same brand of USB webcam, so even if you find one that
works, another one which is supposedly the same type may
not. Network cameras usually contain an internal webserver
and may contain a wireless transmitter, so they can be
connected via Wi-Fi. We shall be using a Linksys WVC54GCA
in this tutorial, because it’s not too expensive, is readily
available and can be made to work with Linux.

The first step to installing a USB camera is to work out
exactly what chipset it is using. Plug it into your computer and
run lsusb:
ian@scamper:~$ lsusb

Bus 007 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root

hub

Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root

hub

Last month We souped up Bash to make it 10% more hardcore.

Part 1 Configure the cameras

B efore the phrase was appropriated by the freaks and
ghouls of reality television, the phrase “Big Brother”
served as a handy word-association stick with which

to beat anyone who wanted to take away our civil liberties. If
information is power, we should try to stop our elected
representatives from collecting too much information about
us, so that the people remain in control of the government
and not the other way round. So what is Linux Format doing
running a webcam tutorial? Surely we all believe in freedom
with a capital F round here?

Well I’m not interested in suppressing the proletariat; I just
want to look after my cows. I live on a farm and need to keep
an eye what’s going on outside at all times of the day and
night. Maybe someone has driven into the yard and is trying
to steal something, or perhaps the animals have decided to
go for a midnight ramble. This article will show you how to
build a relatively inexpensive security system, using webcams
and motion detection software. If you have broadband, you
can monitor your cameras from any location that is
connected to the internet and you can be alerted via email if
the system detects movement. Of course, you could go all
Stasi with your new-found power, but we hope that you won’t.

LXF115.tut_adv 98 15/12/08 10:48:52 am

February 2009 Linux Format     99

Webcams Tutorial

sudo apt-get install build-essential linux-headers-$(uname -r)

To build the gspca driver, run this as root:
./gspca_build

If all goes well the kernel module will be built and loaded. Next
we plug in the webcam and Cheese, but any other application
that uses a webcam would do. If you can see a picture of your
ugly mug on the screen, you know the webcam is working.

To set the camera up we shall plug it into a network hub,
rather than try to fiddle with a wireless connection. The first

 Brother is you
Ian Barton shares the delicious feeling of being able to keep an eye on your 
property without being there. He may be watching you right now…

Part 2 Install the monitoring software

Now that we have a couple of working webcams we need to
set up some software to monitor them. Motion (www.lavrsen.
dk/twiki/bin/view/Motion/WebHome) strikes the right
balance between functionality and ease of setup. It’s worth
studying the wiki on the Motion website, as Motion has many
options that can be tweaked. Motion is available as a Debian/
Ubuntu package, so installing on a Debian based system is
just a matter of:
sudo apt-get install motion

 Knife-wielding ASBO hoodies could be anywhere!

 Your webcam’s should have a configuration web page.

step is to change our computer’s IP address so that it’s on the
same subnet as the camera. We shall set our computer to use
192.168.1.10. Now open Firefox and browse to the camera’s
default address of http://192.168.1.115/ . You should see
the camera’s default welcome page. Click on Setup and enter
the username and password (the default is admin admin).
Adjust the IP address and netmask so that the camera is part
of your own subnet. The network in this tutorial is part of the
192.168.0.0 subnet, so enter 192.168.0.26 as the camera’s IP
address and 255.255.255.0 as the netmask, and enter your
time zone. It’s also a good idea to enable LED operation, so
you can tell by looking at it that the webcam is working. Don’t
forget to set your computer’s IP address back to something in
the 192.168.0.0 range when you have completed the setup.

By default the Linksys WVC54GCA streams video in
MPEG4 ASF format. The video stream can be viewed directly
using MPlayer or VLC:
mplayer http://cam.era.ip.address/img/video.asf

However, we need it to stream in MJPEG format. Enter the the
camera’s URL in your browser in the following format:
http://your.webcam.ip.address/adm/file.cgi?h_

videotype=mjpeg&todo=save

If required the camera be reset back to ASF format using the
following URL format:
http://your.webcam.ip.address/adm/file.cgi?h_

videotype=mpeg4&todo=save

We are using Ubuntu, so Motion is installed as a daemon. This
is great once we’ve configured everything. However, initially
it’s easiest to run it in standalone mode as a normal user,
which allows us to easily try out various configuration options.
The first thing to do is to stop the daemon:
sudo /etc/init.d/motion stop

Motion looks for its configuration files in several different
places, and you can specify the location of the configuration
file on the command line when you start motion. Ubuntu
places the configuration files in /etc/motion. We are going to
copy these files into a directory called .motion in our home
folder, where we can edit them and try out the various
options. Create the .motion file:

Sending an alert
Here is an example email_alert.sh script:

#!/bin/sh

#Destination e-mail address

TO=”ian@firewall.banter.local”

#Subject of the e-mail

SUBJECT=”Motion detected”

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

LXF115.tut_adv 99 15/12/08 10:48:53 am

100     Linux Format February 2009

Tutorial Webcams

mkdir ~/.motion

Copy the default distribution files to the .motion directory,
then change the ownership of the files, so we can edit them:
sudo chown -R ian.users /.motion

The main configuration file is motion.conf. To monitor more
than one webcam, each monitoring process is started in its
own thread and has its own configuration file (thread1.conf,
thread2.conf, etc). Examples from the default install are
included in the ~/.motion directory that we have just created.

Oracular options
We shall start with a single webcam and set its options in
thread1.conf. The motion.conf file is very well commented,
with many possible options. Note that as we are using the
thread files we must include them in motion.conf (see the
bottom of the example motion.conf file for how to do this).
Remember: If you have more than one camera you must

have one

thread file for each camera. E.g. 2 cameras requires 3 files:

This motion.conf file AND thread1.conf and thread2.conf.

Only put the options that are unique to each camera in the

thread config files.

thread /home/ian/.motion/thread1.conf

thread /home/ian/.motion/thread2.conf

We shall leave most of the options in thread1.conf set to the
default. The ones we really need to edit are shown below. The
videodevice setting assumes a USB webcam is being used. To
find out what device our webcam is using, plug it in and type:
ian@scamper:~$ ls /dev/video*

/dev/video0

This will list all the connected video devices. Since we have
only one USB camera it is /dev/video0.

Now we shall make the following changes in thread1.conf:
Video device

videodevice /dev/video0

Image width (pixels). Valid range: Camera dependent,

default: 352

width 640

Image height (pixels). Valid range: Camera dependent,

default: 288

height 480

Make automated snapshot every N seconds (default: 0 =

disabled)

snapshot_interval 0

Target base directory for pictures and videos

 Use a mask file to blank out areas of the camera’s view
that you don’t want motion-detection to work on.

Function Option Argument appended

Start of event (first
motion) on_event_start  None 

End of event (no
motion for gap

seconds)
on_event_end None

Still picture saved on_picture_save  Filename of picture

Movie starts on_movie_start  Filename of movie

Movie ends on_movie_end  Filename of movie 

Motion detected
(each single frame

with Motion
detected)

on_motion_detected None

Never miss another issue Subscribe to the #1 source for Linux on p102.

Recommended to use absolute patch. (Default: current

working

directory)

Must be writeable by Motion.

target_dir /home/ian/public_html/webcam/usb_cam

You can adjust the image height and width settings to suit
your webcam’s default. It’s possible to make these smaller
than your webcam’s maximum settings if you wish. If you
want motion to work like a conventional webcam app, taking
snapshots at predetermined intervals, set the snapshot_
interval in your thread.conf file to something other than
zero. Most importantly you must set the target_dir option to
somewhere that Motion can write to.

Is this thing on?
Now to test if it’s all working. Start Motion:
motion -c ~/.motion/motion.conf

The -c option tells motion to use the configuration file
~/.motion/motion.conf, not the one in /etc/motion. it’s a
good idea to always use the -c option and specify the location
of the configuration file, as Motion looks in several different
places for its config files and the last location found wins.

Try jumping up and down in front of your webcam a few
times and take a look in the directory you specified in target_
dir. If it’s working you should see some AVI files. If you’ve set
the snap_shot_interval to anything other than zero, you
should also see some JPEG files. Note that motion always
creates a file called lastsnap.jpg, which is a symbolic link to
the most recent snapshot.

Now that we’ve set up a USB webcam, we’ll move on to
configure motion to work with our Linksys network camera.
Create a thread2.conf (or edit the default one) and make
sure it’s included in motion.conf. Also make sure that you
have used the hack above to set the Linksys to stream
MJPEG, rather than ASF files. Comment out any existing
videodevice line and insert the following:
#videodevice /dev/video1

netcam_url http://your.webcam.ip.address/img/mjpeg.cgi

Set the target directory so the network camera saves its files
in a different place to the USB camera:
target_dir /home/ian/public_html/webcam/usb_cam

Press Ctrl+C to stop Motion running and restart it:
motion -c ~/.motion/motion.conf

You should now be able to see stills and video captured from
your network camera.

LXF115.tut_adv 100 15/12/08 10:48:53 am

February 2009 Linux Format     101

Webcams Tutorial

Resources

And there’s more…

 Linux gspca webcam driver: 
http://mxhaard.free.fr/download.html

 Motion software motion detector: 
www.lavrsen.dk/twiki/bin/view/Motion/WebHome

You’re not limited to receiving updates of intruders by
email: Motion can keep you informed of what’s going on
via a mixture of its own embedded web server, PHP and
FTP. To find out how, see the extension to this tutorial at
www.linuxformat.co.uk/mag/webcam.

The default motion detection settings work well in most
circumstances, but it’s possible that you might be monitoring
an area that overlooks a road, or has some trees. Movement
in these areas would trigger a Motion event and we would end
up being spammed with spurious warnings. To avoid this
happening we can use a mask_file, which specifies an area of
the picture where motion will be ignored. The mask file is a
PGM (portable graymap) file which must be the same height
and width as the frames being captured. Any area in which
you do not want motion detection must be black, and any
area where you do want motion detected must be white.

We can easily create a mask file using a captured frame
from the webcam and editing it in Gimp. In the image below
there is a sapling and a bush in the foreground, which trigger
a movement event when they are blown by the wind. I fired up
Gimp and edited this image to produce the mask file shown
above left. You can see that we have excluded the area
containing the sapling from motion detection by filling it with
black. The rest of the image, where we want motion to be
detected is filled with white. Make sure that you save the
image as a PGM file in Gimp.

Now we need to tell Motion to use the mask file. In the
thread.conf corresponding to the webcam edit the mask_
file option:
mask_file /home/ian/webcam/my_mask_file.pgm

It’s also possible to specify how many pictures frames in a row
must contain movement before Motion detects it as true
movement. This option is specified using minimum_motion_
frames, the default being 1. The movement sensitivity can also
be adjusted via the threshold setting in the configuration file.
This specifies the number of pixels that must change between
pictures before movement is detected. The default is 1,500.

Email notifications
Motion can run external commands on motion detection and
related events. The events available are shown in the table
over the page. You can specify a shell script in the event
handler in either motion.conf or the appropriate thread.conf
file. When Motion detects movement it creates an MPEG file
of the event. In addition it also creates a JPEG file from one of
the video frames. The point during the movement event that
the JPEG file is created is configured using the output_

normal setting in the thread.conf file. Setting this to “best”
makes Motion save the image with the most changed pixels
during the event.

The various events can be used to send email notifications
with either an attached MPEG or JPEG file. Since the MPEG
files can potentially be quite large it’s probably best to send
the JPEG file showing the picture with the most changed
pixels (around 50k), otherwise you may end up being
spammed by videos of your cat running around in front of
your webcam.

We are going to use Mutt to send an email alert with an
attached JPEG. First we need to install Mutt:
sudo apt-get install mutt

Now we need to create a shell script to send the JPEG file.
The Motion wiki indicates that you can use the %f
placeholder in the event handler and it will be replaced by the
filename. However, that didn’t work for the version of Motion
shipped with Ubuntu Hardy. We shall use the on_event_end
event to send the JPEG.

Note that we have defined jpeg_filename (the name of
the file to send) in our thread.conf. The filename format we
use in our on_end_event handler must correspond to the
one defined in jpeg_filename. Refer to the Motion wiki for
details of the placeholders that you can use in filenames.

Edit the thread.conf corresponding to your camera:
jpeg_filename %v-%Y%m%d%H%M%S-%q

on_event_end send_mail ~/scripts/email_alert.sh /

 “/home/ian/public_html/webcam/linksys/%v-

%Y%m%d%H%M%S-%q”

Now we need to create the email_alert.sh script in our
favourite editor. Don’t forget to make the script executable:
#!/bin/sh

#Destination e-mail address

TO=”ian@firewall.banter.local”

#Subject of the e-mail

SUBJECT=”Motion detected”

echo ‘Email body text goes here’ | mutt -a $1 -s $SUBJECT

$TO

In the script $1 is replaced with the name of the JPEG file,
which is supplied the the Motion event handler. LXF

 If someone’s gone joyriding in my tractor, I want to know!

Part 3 Refine your results

Next month Open source version control the Torvalds way with Git.

LXF115.tut_adv 101 15/12/08 10:48:54 am

