
92     LXF133 July 2010 www.linuxformat.com

Nick Veitch
The Veitch family
motto is, “Our
fame spreads
through our code”.
Or something
like that.

Our
expert

place it in the middle. Repeat the previous step until you get
bored. See the image above for some of the shapes that you
can create after a few iterations.

For some reason, the usual way of solving this problem is
to use a recursive algorithm that calls itself. While these may
seem clever and neat, it’s far from the ideal solution to the
problem. Aside from being a bit tricky to understand, it’s
incredibly wasteful. You may also come across some hard
recursion limits in Python, because it balks at the idea of
adding another function call to the stack. By default, Python
will only allow 1,000 levels of recursion, and while it’s possible
to set some system variables to extend this, certain platforms
do have a hard limit.

For our Koch algorithm, we’ll take a less flashy, but more
processor-friendly and reliable approach (which will become
important for our object later). Quite simply, we start with a

Python: Draw K

Python: Real-world coding projects
to expand your hacking skills

Nick Veitch puts his maths head on to combine Pythagoras’ theorem, 
Python, Clutter and Cogls to produce beautiful fluffy Koch snowflakes.

P
reviously in this series, we’ve played with actors and
stages, and used the power of additional libraries such
as Gstreamer and Cairo to create more objects and

animate them until they were very sorry. It’s time now to turn
our attention to actors once again, but this time we’re not
going to limit ourselves to the meagre rectangles and text
that Clutter provides for us – we’re going to generate our
own. In order to do this, we’re going to need to make use of
some of the primitive methods for manipulating the
underlying GL objects – it’s time to play with Cogls.

Just before we do that though, we need to know what
handsome shape our actor will take. Frankly, basic Euclidean
shapes are a little dull, if useful, so let’s create something a bit
more interesting – a Koch snowflake!

Let it snow
A Koch snowflake, or Koch curve, is a particular type of
fractal. Since fractals are procedural drawings for the most
part, they adapt readily to being drawn by computers, and I’m
sure that many computer science lessons have been spent
trying to draw similar items in a few lines of Basic, Pascal or
whatever redundant language they teach kids these days (it
was Algol and Fortran in my day).

The basic concept is simple. First up, draw an equilateral
triangle. Then for each side, create a further equilateral
triangle that’s one-third of the length of the existing side and

Last month We used Clutter to put buttons on their best behaviour.

Things you’ll need
Obviously, before you start you’ll need Python and the 
Python Clutter module. Both are readily available in your 
distro repositories, assuming you’re running a distro that 
has been updated in the last year or so. It’s usually safer to 
get them from there, but you can check out the latest 
source for Clutter at www.clutter-project.org. 

 This shows the first, second, third and ninth iteration of a
Koch snowflake. After that, it’s hard to see the difference.

LXF133.tut_python 92 7/5/10 3:10:49 pm

Python Tutorial

www.tuxradar.com July 2010 LXF133      93

 Tutorial code

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

list of three points, which happen, more or less, to make an
equilateral triangle. We’ll then create a loop that works its way
through this list, and adds three points in between each pair
on the list (not forgetting the pair that includes the first and
last point). So, each time the loop is processed, it adds an
extra level to the fractal. It’s easy, and it also only takes about
half as long as a recursive solution:
def generatekoch(depth=4):

 sqrtof3=1.7320508075688772

 pointlist=[(0,50),(75,180),(150,50)] # an equilateral triangle

more or less

 for i in range(depth):

 newlist=[]

 for p in range(len(pointlist)):

 x1=pointlist[p][0]

 y1=pointlist[p][1]

 if p==len(pointlist)-1:

 x5=pointlist[0][0]

 y5=pointlist[0][1]

 else:

 x5=pointlist[p+1][0]

 y5=pointlist[p+1][1]

 dx=x5-x1

 dy=y5-y1

 x2=x1+(dx/3.0)

 y2=y1+(dy/3.0)

 x4=x1+(2*dx/3.0)

 y4=y1+(2*dy/3.0)

 x3=(x1+x5)/2 + (sqrtof3 * (y1-y5))/6 #see diagram

 y3=(y1+y5)/2 + (sqrtof3 * (x5-x1))/6

 newlist.append((x1,y1))

 newlist.append((x2,y2))

 newlist.append((x3,y3))

 newlist.append((x4,y4))

 #point 5 is already in the list

 pointlist = newlist

 return pointlist

if __name__ == “__main__”:

 list=generatekoch(3)

 print list

Inside the loop, the values correspond to the five points
along the new line. The first and last are the ones we fetch
from the list; the other three we have to work out. The second
and fourth are one-third and two-thirds of the distance along
the line between the initial pair, so those are easy enough to
work out. The third point is the apex of the new triangle we’ve
drawn, which is a little trickier. Fortunately, Pythagorean
equations for equilateral triangles collapse quite nicely, so all
that we need to calculate this is the square root of 3, which
we can borrow from the math library (or you could just write

 Koch snow

in a decent approximation to save time). If you want to think
about the maths, just remember that an equilateral triangle is
two right-angled triangles back to back. See the diagram
above to help understand the concept in detail.

We used a for loop here rather than use the list as an
iterator, because it’s easier if you want to work with two
values from the list. We write out a new list of points rather
than inserting values into the old one because, apart from
anything else, it rather mucks up the loop counter.

There’s a small caveat to this generation of snow – the
maths relies on the original list being in a clockwise point
order, otherwise it reads the shape inside out (which
nevertheless produces an interesting shape).

Making actors
Now we know what we’re going to draw, we can start building
our actor. Clutter has a metaclass for actors, which is an
object template we can use. This means that without filling
anything in, if we base a new class on clutter.Actor, it will
inherit a range of methods and properties.

Clutter objects themselves are derived from gobject,
which are a part of the Gnome Foundation’s GLib library (not
to be confused with Glibc), which is a large library of cross-
platform data structures. This is important later, because we’ll
need to know a few bits of GLib to make our code work. For
now though, let’s just build a simple triangle actor. Open up a
terminal and type python to run Python in interactive mode,
then enter the following (or if you’re lazy, copy and paste from
the listing files on the LXFDVD)
>>> import gobject

>>> import clutter

>>> from clutter import cogl

>>> class Triangle (clutter.Actor):

... def __init__ (self):

... clutter.Actor.__init__(self)

... self._color = clutter.Color(255,255,255,255)

... def do_paint (self):

... (x1, y1, x2, y2) = self.get_allocation_box()

... width=x2-x1

... height=y2-y1

 This is how we
calculate where
the points go.
Also see the
Pythagoras box
on the next page.

x1,y1 x5,y5

a/3

a

h
a/3

LXF133.tut_python 93 7/5/10 3:10:49 pm

94     LXF133 July 2010 www.linuxformat.com

Tutorial Python

... cogl.path_move_to(width / 2, 0)

... cogl.path_line_to(width, height)

... cogl.path_line_to(0, height)

... cogl.path_line_to(width / 2, 0)

... cogl.path_close()

... cogl.set_source_color(self._color)

... cogl.path_fill()

...

>>> gobject.type_register(Triangle)

<class ‘__main__.Triangle’>

>>>

As well as the usual Clutter library, we’ve also imported
gobject, and specifically, the cogl library. The latter is simply
to shorten the namespace (instead of writing clutter.cogl.
path_move_to we can omit the first clutter). Gobject is
necessary, not only for when we want to add properties and
signals, but also for registering the object type, which is a
necessary part of the Clutter setup. You can see we did this
immediately after making our class – it needs to be done
before we make any Triangle elements.

In the class itself, we’ve defined an __init__ method, as is
usual. The Actor metaclass has an init method of its own, but
we’re overwriting that to add our own functionality (in this
case, merely setting up a colour variable). However, we can
still call the default __init__ method by making a specific call
to it, which will set up the normal Clutter-type things that we
don’t want to be bothered with.

The paint method is the important one, and one that uses
the Cogl functions. Each actor object has a paint method,
which is called whenever the object needs to be drawn. This
method is called by Clutter itself, and may need to be called
numerous times in the course of, for example, an animation.

The drawing commands are pretty easy to understand.
Imagine you have a pen – you need to move it to the position
you want to start at, then draw the path to various points. The
path_close method joins up the first and last points to
complete a shape, which is necessary if you want to fill it.
There are lots of extra drawing commands (most have
relative and absolute versions) and you can check out the
documentation for the primitives on the main Clutter website
here http://clutter-project.org/docs/cogl/stable/cogl-
Primitives.html. Of course, this is the C documentation, but
it’s easy enough to see how most of the methods work.

Magic painting
The only other magic trick in this code is at the beginning of
the paint method. The call to get_allocation_box uses one of
the inherited Actor methods to fetch the drawing size of the
actor, which returns two points giving the limit of the
drawable area. You don’t have to worry about the size of the
object at the moment – whenever you call an actor’s set_
size() method, the various Clutter internals will take care of
updating the size of the actor, and the drawable area will
change accordingly.

We can test our triangles now, by doing the usual setup of
a stage and adding the objects:
>>> stage=clutter.Stage()

>>> stage.set_size(400,400)

>>> t=Triangle()

>>> t.set_size(50,50)

>>> stage.add(t)

>>> stage.set_color(clutter.Color(0,0,0,255))

>>> stage.show_all()

>>> tt=Triangle()

>>> tt.set_size(100,100)

>>> tt.set_position(200,200)

>>> stage.add(tt)

So, we can now make triangles and even animate them:
>>> tt.animate(clutter.EASE_IN_QUAD,2000,’y’,0)

<clutter.Animation object at 0x97b334c (ClutterAnimation at

0x98a1990)>

But all is not as it seems. Try changing the colour of your
triangle, in this way:
>>> tt.set_color(clutter.Color(255,255,0,255))

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

AttributeError: ‘Triangle’ object has no attribute ‘set_color’

Inheritance tax
Not all of the functionality of a standard actor is inherited.
Unlike the built-in rectangle object, we have no method for
setting the colour of the Triangle object we made, unless we
add that to our class.
 def set_color (self, color):

 self._color = color

This snippet would obviously have to be part of the main
class, and in this instance, it accepts a standard clutter.
Color() object, although you could change this. So, adapting
this to our Koch snowflake shape, we would get something
like this (note that the Koch generator, shown elsewhere, has
been removed for brevity):
import gobject

import clutter

from clutter import cogl

class Koch (clutter.Actor):

 “””

 Koch snowflake Actor

 has extra property ‘_iterations’, to control depth of

generated fractal

 “””

 __gtype_name__ = ‘Koch’

 def __init__ (self):

 clutter.Actor.__init__(self)

 self._color = clutter.Color(255,255,255,255)

Never miss another issue Subscribe to the #1 source for Linux on p66.

Pythagoras’ theorem
Pythagoras proved that, for a right-angled triangle, the 
square of the hypotenuse is equal to the sum of the 
squares of the other two sides. By hypotenuse, he means 
the longest side – the one opposite the right angle. By dint 
of it being an equilateral triangle, the length of the base side 
is half that of the hypotenuse, which will help greatly. 

Say, in our case, the height is y, and the length of the 
hypotenuse is x. This gives us:

y2 + (x/2)2 = x2

y2 = x2 – (x/2)2

y2 = x2 – x2/4

y2 = 3x2/4

4y2 = 3x2

Then take the square root of both sides:
2y = (√3)x

y = ((√3)x)/2

LXF133.tut_python 94 7/5/10 3:10:49 pm

Python Tutorial

www.tuxradar.com July 2010 LXF133      95

 self._iterations = 2

 self._points=[(0,0),(0,0),(0,0)]

 def generatekoch(self,dimension):

 ### already explained elsewhere

 return pointlist

 def set_color (self, color):

 self._color = color

 def __paint_shape (self, paint_color):

 pointlist=self._points

 cogl.path_move_to(pointlist[0][0], pointlist[0][1])

 for point in pointlist:

 cogl.path_line_to(point[0], point[1])

 cogl.path_close()

 cogl.set_source_color(paint_color)

 cogl.path_fill()

 def do_paint (self):

 paint_color = self._color

 real_alpha = self.get_paint_opacity() * paint_color.alpha /

255

 paint_color.alpha = real_alpha

 self.__paint_shape(paint_color)

 def set_size (self,width,height):

 clutter.Actor.set_size(self,width,height)

 dimension=float(min(width,height))

 self._points=self.generatekoch(dimension)

 def set_iterations (self,number):

 self._iterations=number

 (x,y) = self.get_size()

 dimension = min(x,y)

 self._points=self.generatekoch(dimension)

 self.do_paint()

gobject.type_register(Koch)

As you can probably see here, we store the list of points as
a property – it would get painfully slow if you had to generate
an eighth-level shape every time you needed to paint it,
especially considering it may need to be painted many times
a second! The generation is called whenever the size or the
number of iterations is changed. This means that the points
will usually generate twice when you set up an object,
assuming you change the default number of iterations.
Unfortunately, this is unavoidable, unless you want the ‘depth’
of the fractal only to take effect when the size is changed.

We’ve overwritten the set_size method of the Actor class
to make sure our generated points reflect the size of the
object, but it’s still important to call the parent set_size
method to ensure buffer allocations and such are updated.

To demonstrate our new shapes, here’s a simple sample
generator to test your objects with:
import clutter, random

from clutterKoch import Koch

stage = clutter.Stage()

stage.set_size(640, 480)

stage.set_color(clutter.Color(0,0,0,255))

stage.connect(‘destroy’, clutter.main_quit)

for i in range(10):

 s = Koch()

 x=random.randint(20,90)

 s.set_size(x, x)

 s.set_iterations(6)

 s.set_color(clutter.Color(200,200,random.

randint(200,255),255))

 z=random.randint(0+x,640-x)

 zz=random.randint(x,x+200)

 s.set_position(z,-zz)

 stage.add(s)

 s.animate(clutter.EASE_IN_QUAD, 5000,’y’,x+random.

randint(480,550),’rotation-angle-y’,random.randint(180,720))

stage.show()

clutter.main()

As long as your Actor file (in this case clutterKoch.py) is
in the same directory, you can run this and generate random
shapes. As you can see, we can animate and rotate our
creations. The points don’t need to be regenerated for this,
because they’re GL objects at this point, so the graphics card
takes care of drawing them in the right place.

Taking it further
Cogls aren’t just useful for drawing shapes. You can change
many aspects of the display using this interface to OpenGL,
even to the extent of generating your own shaders to use.
There’s more documentation on the various abilities of Cogls
at the Clutter website. However, as we mentioned earlier, this
is intended for C programmers, so you’ll have to spend some
time experimenting to get things working in Python. Have a
look at http://clutter-project.org/docs/cogl/stable.

The other thing we’ve been remiss in is setting up our
gobject properly. Essentially, all we’ve done here is the bare
minimum to get the Actor to work. To be nice players with the
system, we should register the Gobject properties of our
object, and we might even want to set up some signals for it.

Gobject is great, but it’s a little complicated and long-
winded, so unfortunately there’s no space to explain it fully
here. The PyGTK documentation has lots of useful
information on Gobjects though, so if you’re interested, it’s
well worth checking out. Head over to www.pygtk.org/docs/
pygobject to read more.  LXF

Next month A bonanza double-sized tutorial on building a complete app.

 Here comes the snow again – you can generate as many flakes as you like,
whatever the weather, with your super soaraway Linux Format code.

LXF133.tut_python 95 7/5/10 3:10:49 pm

